Advertisement
Review Article| Volume 56, ISSUE 1, P181-195, February 2023

Unified Airway Disease

Future Directions
  • Jumah G. Ahmad
    Affiliations
    Department of Otorhinolaryngology - Head and Neck Surgery, University of Texas Health Science Center, 6400 Fannin St, #2700, Houston, TX 77030, USA
    Search for articles by this author
  • Michael J. Marino
    Correspondence
    Corresponding author. Department of Otorhinolaryngology, Mayo Clinic College of Medicine, 5777 East Mayo Blvd, Phoenix, AZ 85054.
    Affiliations
    Department of Otolaryngology – Head and Neck Surgery, Mayo Clinic, Phoenix, AZ, USA
    Search for articles by this author
  • Amber U. Luong
    Affiliations
    Department of Otorhinolaryngology - Head and Neck Surgery, University of Texas Health Science Center, 6400 Fannin St, #2700, Houston, TX 77030, USA

    Center for Immunology and Autoimmune Diseases, Institute of Molecular Medicine, McGovern Medical School at The University of Texas Health Science Center, Houston, TX, USA
    Search for articles by this author

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Otolaryngologic Clinics of North America
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Licari A.
        • Castagnoli R.
        • Denicolò C.F.
        • et al.
        The Nose and the Lung: United Airway Disease?.
        Front Pediatr. 2017; 5: 44
        • Wise S.K.
        • Lin S.Y.
        • Toskala E.
        • et al.
        International Consensus Statement on Allergy and Rhinology.
        Allergic Rhinitis Int Forum Allergy Rhinol. 2018; 8: 108-352
        • Rosenwasser L.J.
        Current understanding of the pathophysiology of allergic rhinitis.
        Immunol Allergy Clin N Am. 2011; 31: 433-439
        • Hopkins C.
        Chronic rhinosinusitis with nasal polyps.
        N Engl J Med. 2019; 381: 55-63
        • Laidlaw T.M.
        Clinical updates in aspirin-exacerbated respiratory disease.
        Allergy Asthma Proc. 2019; 40: 4-6
        • Jenkins C.
        • Costello J.
        • Hodge L.
        Systematic review of prevalence of aspirin induced asthma and its implications for clinical practice.
        BMJ. 2004; 328: 434
        • Rajan J.P.
        • Wineinger N.E.
        • Stevenson D.D.
        • et al.
        Prevalence of aspirin-exacerbated respiratory disease among asthmatic patients: a meta-analysis of the literature.
        J Allergy Clin Immunol. 2015; 135 (e671): 676-681
        • Slavin R.G.
        The upper and lower airways: the epidemiological and pathophysiological connection.
        Allergy Asthma Proc. 2008; 29: 553-556
        • Krouse J.H.
        The unified airway--conceptual framework.
        Otolaryngol Clin N Am. 2008; 41: 257-266
        • Kuruvilla M.E.
        • Lee F.E.
        • Lee G.B.
        Understanding Asthma Phenotypes, Endotypes, and Mechanisms of Disease.
        Clin Rev Allergy Immunol. 2019; 56: 219-233
        • Dougherty R.H.
        • Sidhu S.S.
        • Raman K.
        • et al.
        Accumulation of intraepithelial mast cells with a unique protease phenotype in T(H)2-high asthma.
        J Allergy Clin Immunol. 2010; 125 (e1048): 1046-1053
        • Gans M.D.
        • Gavrilova T.
        Understanding the immunology of asthma: Pathophysiology, biomarkers, and treatments for asthma endotypes.
        Paediatr Respir Rev. 2019; S1526–0542: 30081-30088
        • Woodruff P.G.
        • Modrek B.
        • Choy D.F.
        • et al.
        T-helper type 2-driven inflammation defines major subphenotypes of asthma.
        Am J Respir Crit Care Med. 2009; 180: 388-395
        • Fahy J.V.
        Type 2 inflammation in asthma--present in most, absent in many.
        Nat Rev Immunol. 2015; 15: 57-65
        • Stevens W.W.
        • Peters A.T.
        • Tan B.K.
        • et al.
        Associations Between Inflammatory Endotypes and Clinical Presentations in Chronic Rhinosinusitis.
        J Allergy Clin Immunol Pract. 2019; 7 (e2813): 2812-2820
        • Tomassen P.
        • Vandeplas G.
        • Van Zele T.
        • et al.
        Inflammatory endotypes of chronic rhinosinusitis based on cluster analysis of biomarkers.
        J Allergy Clin Immunol. 2016; 137 (e1444): 1449-1456
        • Bachert C.
        • Zhang L.
        • Gevaert P.
        Current and future treatment options for adult chronic rhinosinusitis: focus on nasal polyposis.
        J Allergy Clin Immunol. 2015; 136: 1431-1440
        • Lavigne P.
        • Lee S.E.
        Immunomodulators in chronic rhinosinusitis.
        World J Otorhinolaryngol Head Neck Surg. 2018; 4: 186-192
        • Shaw J.L.
        • Fakhri S.
        • Citardi M.J.
        • et al.
        IL-33-responsive innate lymphoid cells are an important source of IL-13 in chronic rhinosinusitis with nasal polyps.
        Am J Respir Crit Care Med. 2013; 188: 432-439
        • Mjosberg J.M.
        • Trifari S.
        • Crellin N.K.
        • et al.
        Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161.
        Nat Immunol. 2011; 12: 1055-1062
        • Nagarkar D.R.
        • Poposki J.A.
        • Tan B.K.
        • et al.
        Thymic stromal lymphopoietin activity is increased in nasal polyps of patients with chronic rhinosinusitis.
        J Allergy Clin Immunol. 2013; 132 (e512): 593-600
        • Ramakrishnan R.K.
        • Al Heialy S.
        • Hamid Q.
        Role of IL-17 in asthma pathogenesis and its implications for the clinic.
        Expert Rev Respir Med. 2019; 13: 1057-1068
        • Al-Ramli W.
        • Prefontaine D.
        • Chouiali F.
        • et al.
        T(H)17-associated cytokines (IL-17A and IL-17F) in severe asthma.
        J Allergy Clin Immunol. 2009; 123: 1185-1187
        • Ricciardolo F.L.M.
        • Sorbello V.
        • Folino A.
        • et al.
        Identification of IL-17F/frequent exacerbator endotype in asthma.
        J Allergy Clin Immunol. 2017; 140: 395-406
        • Sorbello V.
        • Ciprandi G.
        • Di Stefano A.
        • et al.
        Nasal IL-17F is related to bronchial IL-17F/neutrophilia and exacerbations in stable atopic severe asthma.
        Allergy. 2015; 70: 236-240
        • Agache I.
        • Ciobanu C.
        • Agache C.
        • et al.
        Increased serum IL-17 is an independent risk factor for severe asthma.
        Respir Med. 2010; 104: 1131-1137
        • Chien J.W.
        • Lin C.Y.
        • Yang K.D.
        • et al.
        Increased IL-17A secreting CD41 T cells, serum IL-17 levels and exhaled nitric oxide are correlated with childhood asthma severity.
        Clin Exp Allergy. 2013; 43: 1018-1026
        • Camargo L.D.N.
        • Righetti R.F.
        • Aristoteles L.
        • et al.
        Effects of anti-IL-17 on inflammation, remodeling, and oxidative stress in an experimental model of asthma exacerbated by LPS.
        Front Immunol. 2017; 8: 1835
        • Nadeem A.
        • Ahmad S.F.
        • Al-Harbi N.O.
        • et al.
        Inhibition of BET bromodomains restores corticosteroid responsiveness in a mixed granulocytic mouse model of asthma.
        Biochem Pharmacol. 2018; 154: 222-233
        • Irvin C.
        • Zafar I.
        • Good J.
        • et al.
        Increased frequency of dual-positive TH2/TH17 cells in bronchoalveolar lavage fluid characterizes a population of patients with severe asthma.
        J Allergy Clin Immunol. 2014; 134 (e7): 1175-1186
        • Cosmi L.
        • Liotta F.
        • Annunziato F.
        Th17 regulating lower airway disease.
        Curr Opin Allergy Clin Immunol. 2016; 16: 1-6
        • Liu W.
        • Liu S.
        • Verma M.
        • et al.
        Mechanism of T(H)2/T(H)17-predominant and neutrophilic T(H)2/T(H)17-low subtypes of asthma.
        J Allergy Clin Immunol. 2017; 139 (e4): 1548-1558
        • McGonagle D.G.
        • McInnes I.B.
        • Kirkham B.W.
        • et al.
        The role of IL-17A in axial spondyloarthritis and psoriatic arthritis: recent advances and controversies.
        Ann Rheum Dis. 2019; 78 ([published correction appears in Ann Rheum Dis. 2020 Jan;79(1):e12]): 1167-1178
        • Rabinovitch N.
        Urinary leukotriene E4.
        Immunol Allergy Clin North Am. 2007; 27: 651-664
        • Rabinovitch N.
        Urinary leukotriene E4 as a biomarker of exposure, susceptibility and risk in asthma.
        Immunol Allergy Clin North Am. 2012; 32: 433-445
        • Divekar R.
        • Hagan J.
        • Rank M.
        • et al.
        Diagnostic utility of urinary LTE4 in asthma, allergic rhinitis, chronic rhinosinusitis, nasal polyps, and aspirin sensitivity.
        J Allergy Clin Immunol Pract. 2016; 4: 665-670
        • Gyllfors P.
        • Kumlin M.
        • Dahlen S.E.
        • et al.
        Relation between bronchial responsiveness to inhaled leukotriene D4 and markers of leukotriene biosynthesis.
        Thorax. 2005; 60: 902-908
        • Lee E.
        • Robertson T.
        • Smith J.
        • et al.
        Leukotriene receptor antagonists and synthesis inhibitors reverse survival in eosinophils of asthmatic individuals.
        Am J Respir Crit Care Med. 2000; 161: 1881-1886
        • Laidlaw T.M.
        Pathogenesis of NSAID-induced reactions in aspirin-exacerbated respiratory disease.
        World J Otorhinolaryngol Head Neck Surg. 2018; 4: 162-168
        • Laidlaw T.M.
        • Levy J.M.
        NSAID-ERD syndrome: the new hope from prevention, early diagnosis, and new therapeutic targets.
        Curr Allergy Asthma Rep. 2020; 20: 10
        • Kumlin M.
        • Dahlen B.
        • Bjorck T.
        • et al.
        Urinary excretion of leukotriene E4 and 11-dehydrothromboxane B2 in response to bronchial provocations with allergen, aspirin, leukotriene D4, and histamine in asthmatics.
        Am Rev Respir Dis. 1992; 146: 96-103
        • Choby G.
        • Low C.M.
        • Levy J.M.
        • et al.
        Urine Leukotriene E4: Implications as a Biomarker in Chronic Rhinosinusitis.
        Otolaryngol Head Neck Surg. 2022; 166: 224-232
        • Mohebati A.
        • Milne G.L.
        • Zhou X.K.
        • et al.
        Effect of zileuton and celecoxib on urinary LTE4 and PGE M levels in smokers.
        Cancer Prev Res (Phila). 2013; 6: 646-655
        • Hoffman B.C.
        • Rabinovitch N.
        Urinary leukotriene E4 as a biomarker of exposure, susceptibility, and risk in asthma: an update.
        Immunol Allergy Clin North Am. 2018; 38: 599-610
        • Leigh R.
        • Vethanayagam D.
        • Yoshida M.
        • et al.
        Effects of montelukast and budesonide on airway responses and airway inflammation in asthma.
        Am J Respir Crit Caremed. 2002; 166: 1212-1217
        • Hanshew A.S.
        • Jetté M.E.
        • Rosen S.P.
        • et al.
        Integrating the microbiota of the respiratory tract with the unified airway model. 126. Respiratory Medicine WB Saunders Ltd, 2017: 68-74
        • Kumpitsch C.
        • Koskinen K.
        • Schöpf V.
        • et al.
        The microbiome of the upper respiratory tract in health and disease.
        BMC Biol [Internet. 2019; 17 (Available at:): 87
        • Koskinen K.
        • Pausan M.R.
        • Perras A.K.
        • et al.
        First insights into the diverse human archaeome: specific detection of archaea in the gastrointestinal tract, lung, and nose and on skin.
        MBio. 2017; 8
        • Zhang I.
        • Pletcher S.D.
        • Goldberg A.N.
        • et al.
        Fungal microbiota in chronic airway inflammatory disease and emerging relationships with the host immune response.
        Front Microbiol. 2017; 8
        • Cleland E.J.
        • Bassioni A.
        • Boase S.
        • et al.
        The fungal microbiome in chronic rhinosinusitis: richness, diversity, postoperative changes and patient outcomes.
        Int Forum Allergy Rhinol [Internet]. 2014; 4 (Available at:): 259-265
        • Goggin R.K.
        • Bennett C.A.
        • Bassiouni A.
        • et al.
        Comparative viral sampling in the sinonasal passages; different viruses at different sites.
        Front Cell Infect Microbiol. 2018; 8
        • Altman M.C.
        • Gill M.A.
        • Whalen E.
        • et al.
        Transcriptome networks identify mechanisms of viral and nonviral asthma exacerbations in children.
        Nat Immunol. 2019; 20: 637-651
        • Jervis Bardy J.
        • Psaltis A.J.
        Next generation sequencing and the microbiome of chronic Rhinosinusitis: a primer for clinicians and review of current research, its limitations, and future Directions.
        Ann Otol Rhinol Laryngol. 2016; 125 ([cited 2020 Jan 2];Available at:): 613-621
        • Vandelaar L.J.
        • Hanson B.
        • Marino M.
        • et al.
        Analysis of Sinonasal microbiota in exacerbations of chronic Rhinosinusitis subgroups.
        OTO Open. 2019; 3 (2473974X1987510)
        • Haider A.A.
        • Marino M.J.
        • Yao W.C.
        • et al.
        The potential of high-throughput DNA sequencing of the paranasal sinus microbiome in diagnosing odontogenic sinusitis.
        Otolaryngol Head Neck Surg [Internet]. 2019; 161 ([cited 2020 Jan 2];Available at:): 1043-1047
        • Rapoport S.K.
        • Smith A.J.
        • Bergman M.
        • et al.
        Determining the utility of standard hospital microbiology testing: comparing standard microbiology cultures with DNA sequence analysis in patients with chronic sinusitis.
        World J Otorhinolaryngol – Head Neck Surg. 2019; 5: 82-87
        • Sharma A.
        • Laxman B.
        • Naureckas E.T.
        • et al.
        Associations between fungal and bacterial microbiota of airways and asthma endotypes.
        J Allergy Clin Immunol. 2019; 144 (e7): 1214-1227
        • Maiz L.
        • Nieto R.
        • Canton R.
        • et al.
        Fungi in bronchiectasis: a concise review.
        Int J Mol Sci. 2018; 19: 142
        • Nguyen L.D.
        • Viscogliosi E.
        • Delhaes L.
        The lung mycobiome: an emerging field of the human respiratory microbiome.
        Front Microbiol. 2015; 6: 89
        • Tipton L.
        • Ghedin E.
        • Morris A.
        The lung mycobiome in the nextgeneration sequencing era.
        Virulence. 2017; 8: 334-341
        • Fraczek M.G.
        • Chishimba L.
        • Niven R.M.
        • et al.
        Corticosteroid treatment is associated with increased filamentous fungal burden in allergic fungal disease.
        J Allergy Clin Immunol. 2018; 142: 407-414
        • Gelber J.T.
        • Cope E.K.
        • Goldberg A.N.
        • et al.
        Evaluation of malassezia and common fungal pathogens in subtypes of chronic rhinosinusitis.
        Int Forum Allergy Rhinol. 2016; 6: 950-955
        • Tyler M.A.
        • Lam K.
        • Marino M.J.
        • et al.
        Revisiting the controversy: The role of fungi in chronic rhinosinusitis.
        Int Forum Allergy Rhinol. 2021; 11: 1577-1587
        • Millien V.O.
        • Lu W.
        • Shaw J.
        • et al.
        Cleavage of fibrinogen by proteinases elicits allergic responses through Toll-like receptor 4.
        Science. 2013; 341: 792-796
        • Ooi E.H.
        • Wormald P.J.
        • Carney A.S.
        • et al.
        Surfactant protein d expression in chronic rhinosinusitis patients and immune responses in vitro to Aspergillus and Alternaria in a nasal explant model.
        Laryngoscope. 2007; 117: 51-57
        • Psaltis A.J.
        • BruhnMA
        • Ooi E.H.
        • et al.
        Nasal mucosa expression of lactoferrin in patientswith chronic rhinosinusitis.
        Laryngoscope. 2007; 117: 2030-2035
        • Tyler M.A.
        • Padro Dietz C.J.
        • Russell C.B.
        • et al.
        Distinguishing molecular features of allergic fungal rhinosinusitis.
        Otolaryngol Head Neck Surg. 2018; 159: 185-193
        • Maina I.W.
        • Patel N.N.
        • Cohen N.A.
        Understanding the role of biofilms and superantigens in chronic rhinosinusitis.
        Curr Otorhinolaryngol Rep. 2018; 6: 253-262
        • Fraser J.D.
        • Proft T.
        The bacterial superantigen and superantigenlike proteins.
        Immunol Rev. 2008; 225: 226-243
        • Nagalingam N.
        • Cope E.
        microbiology SL-T in, 2013 undefined. Probiotic strategies for treatment of respiratory diseases. Elsevier [Internet].
        ([cited 2019 Dec 18]. Available at:)
        • Kim J.H.
        • Yi J.S.
        • Gong C.H.
        • et al.
        Development of Aspergillus protease with ovalbumin-induced allergic chronic rhinosinusitis model in the mouse.
        Am J Rhinol Allergy. 2014; 28: 465-470
        • Kim H.C.
        • Lim J.Y.
        • Kim S.
        • et al.
        Development of a mouse model of eosinophilic chronic rhinosinusitis with nasal polyp by nasal instillation of an Aspergillus protease and ovalbumin.
        Eur Arch Otorhinolaryngol. 2017; 274: 3899-3906
        • Park S.C.
        • Kim S.I.
        • Hwang C.S.
        • et al.
        Multiple airborne allergeninduced eosinophilic chronic rhinosinusitis murine model.
        Eur Arch Otorhinolaryngol. 2019; 276: 2273-2282
        • Sun H.
        • Damania A.
        • Mair M.L.
        • et al.
        STAT6 Blockade Abrogates Aspergillus-Induced Eosinophilic Chronic Rhinosinusitis and Asthma, A Model of Unified Airway Disease.
        Front Immunol. 2022; 13: 818017
        • Krouse J.H.
        Asthma Management for the Otolaryngologist.
        Otolaryngol Clin N Am. 2017; 50: 1065-1076
        • Pauwels R.A.
        • Pedersen S.
        • Busse W.W.
        Early intervention with budesonide in mild persistent asthma: a randomised, double-blind trial.
        Lancet. 2003; 361: 1071-1076
        • Adams N.P.
        • Bestall J.B.
        • Malouf R.
        • et al.
        Inhaled beclomethasone versus placebo for chronic asthma.
        Cochrane Database Syst Rev. 2005; : CD002738
        • Orlandi R.R.
        • Kingdom T.T.
        • Hwang P.H.
        • et al.
        International consensus statement on allergy and rhinology: Rhinosinusitis.
        Int Forum Allergy rhinology. 2016; 6: S22-S209
        • Snidvongs K.
        • Kalish L.
        • Sacks R.
        • et al.
        Topical steroid for chronic rhinosinusitis without polyps.
        Cochrane Database Syst Rev. 2011; : CD009274
        • Chong L.Y.
        • Head K.
        • Hopkins C.
        • et al.
        Intranasal steroids versus placebo or no intervention for chronic rhinosinusitis.
        Cochrane Database Syst Rev. 2016; 4: CD011996
        • Kalish L.
        • Snidvongs K.
        • Sivasubramaniam R.
        • et al.
        Topical steroids for nasal polyps.
        Cochrane Database Syst Rev. 2012; 12: CD006549
        • Divekar R.
        • Lal D.
        Recent advances in biologic therapy of asthma and the role in therapy of chronic rhinosinusitis.
        F1000Res. 2018; 7: 412https://doi.org/10.12688/f1000research.13170.1
        • Dixon A.E.
        • Castro M.
        • Cohen R.I.
        • et al.
        • American Lung Association–Asthma Clinical Research Centers’ Writing Committee
        Efficacy of nasal mometasone for the treatment of chronic sinonasal disease in patients with inadequately controlled asthma.
        J Allergy Clin Immunol. 2015; 135 (e5): 701-709
        • Schaper C.
        • Noga O.
        • Koch B.
        • et al.
        Anti-inflammatory properties of montelukast, a leukotriene receptor antagonist in patients with asthma and nasal polyposis.
        J Investig Allergol Clin Immunol. 2011; 21: 51-58
        • Ragab S.
        • Parikh A.
        • Darby Y.C.
        • et al.
        An open audit of montelukast, a leukotriene receptor antagonist, in nasal polyposis associated with asthma.
        Clin Exp Allergy. 2001; 31: 138591
        • Drazen J.M.
        • Harrington D.
        New biologics for asthma.
        N Engl J Med. 2018; 378: 2533-2534
        • Hanania N.A.
        • Alpan O.
        • Hamilos D.L.
        • et al.
        Omalizumab in severe allergic asthma inadequately controlled with standard therapy: a randomized trial.
        Ann Intern Med. 2011; 154: 573-582
        • Wenzel S.
        • Ford L.
        Pearlman Det al. Dupilumab in persistent asthma with elevated eosinophil levels.
        N Engl J Med. 2013; 368: 2455-2466
        • Wang F.P.
        • Liu T.
        • Lan Z.
        • et al.
        Efficacy and safety of anti-Interleukin-5 therapy in patients with asthma: a systematic review and meta-analysis.
        PLoS One. 2016; 11: e0166833
        • Corren J.
        • Parnes J.R.
        • Wang L.
        • et al.
        Tezepelumab in Adults with Uncontrolled Asthma.
        N Engl J Med. 2017; 377 ([Erratum in: N Engl J Med. 2019 May 23;380(21):2082. PMID: 28877011]): 936-946
        • Bachert C.
        • Han J.K.
        Desrosiers met al. Efficacy and safety of dupilumab in patients with severe chronic rhinosinusitis with nasal polyps (LIBERTY NP SINUS-24 and LIBERTY NP SINUS-52): results from two multicentre, randomised, double-blind, placebo-controlled, parallel-group phase 3 trials.
        Lancet. 2019; 394: 1638-1650
        • Bachert C.
        • Mannent L.
        • Naclerio R.M.
        • et al.
        Effect of subcutaneous Dupilumab on nasal polyp burden in patients with chronic sinusitis and nasal polyposis: a randomized clinical trial.
        JAMA. 2016; 315: 469-479
        • Busse W.W.
        • Maspero J.F.
        Rabe KFet al. Liberty asthma QUEST: phase 3 randomized, double blind, placebo-controlled, parallel-group study to evaluate Dupilumab efficacy/safety in patients with uncontrolled, moderate-to-severe asthma.
        Adv Ther. 2018; 35: 737-748
        • Simpson E.L.
        • Bieber T.
        • Guttman-Yassky E.
        • et al.
        Two phase 3 trials of Dupilumab versus placebo in atopic dermatitis.
        N Engl J Med. 2016; 375: 2335-2348
        • Edris A.
        • De Feyter S.
        • Maes T.
        • et al.
        Monoclonal antibodies in type 2 asthma: a systematic review and network meta-analysis.
        Respir Res. 2019; 20: 179
        • Oykhman P.
        • Paramo F.A.
        • Bousquet J.
        • et al.
        Comparative efficacy and safety of monoclonal antibodies and aspirin desensitization for chronic rhinosinusitis with nasal polyposis: A systematic review and network meta-analysis.
        J Allergy Clin Immunol. 2022; 149: 1286-1295
        • Ando K.
        • Fukuda Y.
        • Tanaka A.
        • et al.
        Comparative Efficacy and Safety of Tezepelumab and Other Biologics in Patients with Inadequately Controlled Asthma According to Thresholds of Type 2 Inflammatory Biomarkers: A Systematic Review and Network Meta-Analysis.
        Cells. 2022; 11: 819
        • Ghoreschi K.
        • Laurence A.
        • O'Shea J.J.
        Janus Kinases in Immune Cell Signaling.
        Immunol Rev. 2009; 228: 273-287
        • O'Shea J.J.
        • Schwartz D.M.
        • Villarino A.V.
        • et al.
        The JAK-STAT Pathway: Impact on Human Disease and Therapeutic Intervention.
        Annu Rev Med. 2015; 66: 311-328
        • Pernis A.B.
        • Rothman P.B.
        JAK-STAT Signaling in Asthma.
        J Clin Invest. 2002; 109: 1279-1283
        • Subramanian H.
        • Hashem T.
        • Bahal D.
        • et al.
        Ruxolitinib Ameliorates Airway Hyperresponsiveness and Lung Inflammation in a Corticosteroid-Resistant Murine Model of Severe Asthma.
        Front Immunol. 2021; 12: 786238
        • Jeannin P.
        • Lecoanet S.
        • Delneste Y.
        • et al.
        IgE versus IgG4 production can be differentially regulated by IL-10.
        J Immunol. 1998; 160: 3555-3561
        • Smith T.R.F.
        • Alexander C.
        • Kay A.B.
        • et al.
        Cat allergen peptide immunotherapy reduces CD4+ T cell responses to cat allergen but does not alter suppression by CD4+ CD25+ T cells: a double-blind placebo-controlled study.
        Allergy. 2004; 59: 1097-1101
        • Calzada D.
        • Cremades-Jimeno L.
        • López-Ramos M.
        • et al.
        Peptide Allergen Immunotherapy: A New Perspective in Olive-Pollen Allergy.
        Pharmaceutics. 2021; 13: 1007
        • Worm M.
        SPIREs: a new horizon for allergic disease treatment?.
        Expert Rev Clin Immunol. 2015; 11: 1173-1175
        • Hafner R.
        • Couroux P.
        • Armstrong K.
        • et al.
        Two year persistent treatment effect in reducing nasal symptoms of cat allergy after 4 doses of Cat-PAD, the first in a new class of synthetic peptide immuno-regulatory epitopes.
        Clin Transl Allergy. 2013; 3: O7
        • Chalmers J.D.
        • Haworth C.S.
        • Metersky M.L.
        • et al.
        WILLOW Investigators. Phase 2 Trial of the DPP-1 Inhibitor Brensocatib in Bronchiectasis.
        N Engl J Med. 2020; 383: 2127-2137